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Climate Model Metrics Panel
Request for a Simple MJO Metric

In January 2011, the WGNE/WGCM Climate Model Metrics Panel (Peter

Simple Metrics Simple vs. Conventional Metrics

The MJOWG (Ken Sperber - co-chair) lead the development of The simple metrics approach uses the protocol developed by Sperber et al.

H Observations

Gleckler — co-chair) approached the MJO Task Force! (MJOTF) to MJO diagnostics for assessing the fidelity of MJO simulation (2005). 20-100 day bandpass filtered outgoing longwave radiation (OLR) | SCMPs
request a simple metric for assessing the quality of the MJO in climate (CLIVAR MJOWG 2009, J. Clim., 22, 3006-3029, doi: 10.1175/2008 from the models is projected onto the two leading AVHRR OLR EOF’s that o | T A Simulations: Fi y

and forecast models. Given that conventional diagnostics were deemed
too complex by the Climate Model Metrics Panel, the goal of the MJOTF

JCLI2731.1) and Kim et al. 2009, J. Clim., 22, 6413-6436, doi:
10.1175/2009JCLI3063.1). One insightful approach was to use

describe the propagation of MJO convection (Sperber 2003). Projecting the
model data onto the observed EOF’s addresses the question: How well do
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was to develop a simple metric for assessing MJO fidelity that was frequency-wavenumber decomposition of near-equatorial rainfall to the models simulate the observed MJO? Furthermore, the models need to .

consistent with the more complicated diagnostics developed by the evaluate eastward vs. westward propagation as a function of spatial be projected onto a standard set of basis functions in order to be able to .
CLIVAR MJO Working Group? (MJOWG). scale. make a direct quantitative comparison of performance. 2 | ®e ©
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The figure above shows the maximum positive correlation vs. the East/
West power ratio. The regression between the two metrics is significant at
the 5% level, indicating that overall the simple metric gives results
consistent with the more complex conventional metric. Further evidence
that the simple metrics are consistent with more complex diagnostics is
presented below.
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For each model, projecting the filtered OLR onto the observed EOF’s
results in one principal component (PC) time series for each EOF. The
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MJO Characteristics and Teleconnections 30-80 days. The right figure shows the East/West power ratio, at which it occurs giving an indication of the “coherence” with which the z z

calculated by dividing the sum of the eastward propagating power by propagation occurs, and an estimate of the MJO time scale, respectively. AN W
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» Dominant mode of subseasonal variability in the tropics

> Eastward propagating convection (Indian Ocean to the central Pacific) the westward propagating cgunterpart for the afore-mentip nled MJO o —wm. | [ e . D, B A B\ P,
> ~30-70 day time scale wavenumbers anq frequencies. The. East/West power rapo IS a 2\ I B . ' ;

> Strongest during boreal winter con.vep.honal metnc u.sed to assess if eastward propagating | ! : ] . i i

> During boreal summer there is also a northward propagating yarlablllty dominates in the MJO frequenpy band: The analysis 3 = !

component over India and Southeast Asia mclude_s 15 Coupled.ModeI Intercortr;parlson Project-3 (CMIP3) L | L ‘e T L L
> Affects convection over the eastern Pacific and Africa simulations of the Climate of the 207 Gentury (1961-1999), 8 * L . - ) CFOL A2 (Toke0.029) Ro020, Lages 1) OFDL AM2 (Toko0 1) Re045. Lage1s
> Influences the development of hurricanes and typhoons simulations from Kim et al. (2009), and two pairs 9f simulations using I 0 | | | | Wa .
CAM and GFDL models to evaluate MJO sensitivity to changed T remen © 7 T amemmesieconsaionoa)

» Impacts the development of some EI Nino events

> Influences rainfall and temperature over the United States convective processes (Kim et al. 2011). The East/\West power ratios

indicate that the majority of models underestimate the East/\West
power ratio, even given the observational uncertainty of this metric.

The left figure shows the lag correlation structure of the observations and
the models. For positive time lags, PC-2 leads PC-1, indicating eastward
propagation of convective anomalies. From this lag correlation structure,
the right figure shows the maximum positive correlation vs. the time lag at
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MJO Simulation and Improvement Efforts
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~ Poorly represented in the vast majority of GCMs (Slingo et al. 1996, which it occurred (also see table below). The majority of models have a o it W ] e
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transition time for convection from the Indian Ocean to the Maritime LSS LU L T L

» Reflects the poor simulation of large-scale organized convection

» MJO improved through the addition of convective inhibition processes
(i.e., imposing larger minimum CAPE thresholds before releasing the
convective instability, improving the representation of downdrafts and
rain re-evaporation, etc.)

» However, in many cases these changes adversely affect the mean

The figure above shows the propagation of near-equatorial OLR anomalies
from observations and models. The propagation characteristics, based on
Wheeler and Hendon (2004) multivariate EOF’s, are consistent with the
simple metrics. For example, compared to observations, CSIRO-Mk3.5 has
stronger and more coherent eastward propagation, consistent with its larger
maximum positive correlation (MPC). Analogously, INGV-SXG has less

Continent that is consistent with observations (~11 days). However, their
smaller maximum positive correlations indicate that the propagation is not
as coherent as observed. Four models are incorrectly dominated by
westward propagation. Additionally, the standard deviation of the PC’s is a
direct measure of the amplitude of the convective anomalies.
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